
a 

NASA Technical Memorandum 101952 

A Message Passing Kernel for 
the Hypercluster Parallel 
Processing Test Bed 

Richard A. Blech 
Nationul Aeronautics and Space Administration 
Lewis Research Center 
Cleveland, Ohio 

Angela Quealy 
Sverdmp Technology, Inc. 
NASA Lewis Research Center Group 
Cleveland, Ohio 

and 

Gary L. Cole 
National Aeronautics and Space Administration 
Lewis Research Center 
Cleveland, Ohio 

Prepared for the 
Fourth Conference on Hypercubes, Concurrent Computers, and Applications 
cosponsored by the U.S. Department of Energy (Applied Mathematical 
Sciences Program), Strategic Defense Initiative Organization (Office of 
Innovative Science and Technology), Joint Tactical Fusion Program 
Office, U.S. Air Force (Electronic Systems Division), Air Force Office 
of Scientific Research, and NASA Ames Research Center 
Monterey, California, March 6-8, 1989 

u, 

- 
% 

- 

_ _  - ~ 

(1ASL-TU-10195i) A B€SSAGE L A Z S I L I G  KEBN€L 
ECE %LE BYPBECLISfE6 E A P A L L E I  C E C C E S S I I G  IESI  EEC ( M A E A )  10 F CSCL 098 

ti 89- 2 C6 L 4 

Unclas 
G3/62 0198CSE 



A MESSAGE-PASSING KERNEL FOR THE HYPERCLUSTER 

PARALLEL-PROCESSING TEST BED 

Richard A .  Blech 
Nat ional  Aeronautics and Space Administ rat ion 

Lewis Research Center 
Cleveland,  Ohio 44135 

Angela Quealy 
Sverdrup Technology, I n c .  

NASA Lewis Research Center Group 
Cleveland,  Ohio 44135 

and 

Gary L .  Cole 
Nat ional  Aeronautics and Space Administ rat ion 

Lewis Research Center 
Cleveland,  Ohio 44135 

ABSTRACT 

A Message-Passing Kernel (MPK) for 
the Hypercluster parallel-processing test bed 
is described. The Hypercluster is being deve- 
loped at  the NASA Lewis Research Center to 
support investigations of parallel algorithms 
and architectures for computational fluid 
and structural mechanics applications. The 
Hypercluster resembles the hypercube archi- 
tecture except that each node consists of 
multiple processors communicating through 
shared memory. The MPK efficiently routes 
information through the Hypercluster, using 
a message-passing protocol when necessary 
and faster shared-memory communication 
whenever possible. The MPK also interfaces 
all of the processors with the Hypercluster 
operating system (HYCLOPS), which runs on 
a Front-End Processor (FEP). This approach 
distributes many of the I/O tasks to the 
Hypercluster processors and eliminates the 
need for a separate I/O support program on 
the FEP. 

INTRODUCTION 

Two research areas which are critical 
to the future progress of aerospace technolo- 
gy are computational fluid mechanics (CFM) 
and computational structural mechanics 
(CSM). The practical limits of applications 
in both of these areas are being set  by the 
state-of-the-art in computer architecture 

and software techniques. Parallel processing 
is an architectural concept which has the po- 
tential for vastly improving the performance 
of future computer systems. However, the 
use of parallel-processing architectures will 
require a reassessment of numerical methods 
and software techniques that are currently 
being used on single-processor computers for 
CFMICSM. Likewise, CFM/CSM require- 
ments will, more than likely, impact the di- 
rections taken in the development of future 
parallel architectures. 

There have been many parallel archi- 
tectures proposed in the last several years 
(Refs .  1 to 3). Several have even enjoyed 
commercial success (Ref. 4). These architec- 
tures basically fall into two categories: 
shared memory and distributed memory. 
Each category has i ts  own advantages and 
disadvantages, as shown in Table I. Gen- 
erally, distributed-memory architectures are 
characterized by a larger number of proces- 
sors and slower processor-to-processor 
communications than their shared-memory 
counterparts. This results in potentially high 
performance for problems that exhibit fine- 
grain parallelism. That, and relatively low 
cost, have combined to make distributed- 
memory architectures the focus of consid- 
erable research. The promise of higher 
performance, however, comes at  the price of 
additional effort which must be put into the 
programming and mapping of applications 
6nto this architecture. In general, the 



I choice of an architecture for a given applica- 
tion is not clear-cut. Future technological 
breakthroughs may tip the scales in favor of 
one over another. 

Researchers a t  NASA Lewis have initi- 
ated the development of the Hypercluster, a 
parallel-processing test bed which combines 
shared and distributed-memory architectures. 
This allows, within a common programming 
and operating evironment, investigations into 
the relative merits of both architectures and 
a platform for investigating hybrid (com- 
bined shared and distributed memory) archi- 
tectures. The Hypercluster also provides the 
capability to develop and evaluate program- 
ming and operating software for distributed, 
shared and hybrid-memory architectures. 

The success of the Hypercluster will 
depend largely on the software tools provided 
with it. An Initial Operating Capability 
(IOC) has been defined which will provide the 
programming and operating tools necessary 
to use the Hypercluster (Ref. 5). This in- 
cludes a FORTRAN 77 compiler for applica- 
tion program development, a library of sub- 
routines to support vector and parallel pro- 
cessing, and an interactive operating sys- 
tem. Future enhancements to the Hyperclus- 
ter software environment will further ease 
the application development task for 
hypercube-like and other architectures. 

An integral part of the IOC is the 
Hypercluster Message-Passing Kernel (MPK) 
which resides on each of the processors. The 
MPK provides basic interprocessor communi- 
cation and synchronization services as well 
as an interface to the Hypercluster Operat- 
ing System, HYCLOPS. The Hypercluster 
MPK is unique from other hypercube kernels 
in that it deals with multiprocessor shared- 
memory nodes and has a shared-memory 
interface to HYCLOPS. A description of the 
MPK and how it interacts with the Hyper- 

I 

I 

I 

I cluster architecture is given in this report. 

I HARDWARE OVERVIEW 

The architecture for a four-node 
Hypercluster prototype is shown in Fig. 1. A 
four-node Hypercluster consists of four clus- 
ters of processors interconnected in a binary 
n-cube configuration by internode links. The 
links allow communication between nodes 
and consist of two Control Processors (CPs) 
communicating through dual-ported mem- 
ory. Each node can have a special purpose 
link dedicated to communicating with a 

Front-End Processor (FEP). The architec- 
ture of these links is identical to the archi- 
tecture of the internode links. The FEP and 
the associated CPs on its bus can be consid- 
ered as a special-purpose Hypercluster node. 
Thus, if desired, FEP functions can take ad- 
vantage of parallel processing. The Hyper- 
cluster user interacts with the hardware 
through HYCLOPS, which runs on the FEP. 

Each node of the Hypercluster can con- 
sist of any number and combination of pro- 
cessors. The types of processors currently 
used in the Hypercluster are scalar proces- 
sors (SPs) and vector processors (VPs). The 
VPs act as peripherals to the scalar proces- 
sors, so that every node containing a VP 
must have an SP dedicated to operating the 
VPs. Processors within a node communicate 
through shared memory. The memory may 
be dual-ported memory located on the pro- 
cessor board itself, or a separate memory 
board. 

The VPs and SPs perform the program 
computations within the Hyperclustler. The 
CPs can also perform computations, but this 
could degrade their performance as commu- 
nication processors. For this reason, CPs are 
usually dedicated to communication only. 
However, applications requiring only nearest- 
neighbor communications may be able to take 
advantage of the fast dual-port meimory 
interface between the CPs. This approach 
would use the Hypercluster as a ring 
architecture, where each node in the ring 
communicates with its neighbors through 
dual-ported memory. 

Within each communication lmk, each 
processor has the capability of interrupting 
the other processor, informing it that inform- 
ation is waiting within the dual-port memory. 
The interrupted processor can then take this 
information and transfer it to an SP within 
i t ' s  node, or to another CP if the informa- 
tion is destined for another node. It is impor- 
tant to note that the CPs can routle informa- 
tion throughout the Hypercluster without 
interrupting or requiring the assistance of 
the SP ' s or VP ' s ,  which are busy computing 
the current application. 

The Hypercluster resembles other 
hypercube architectures in many respects, 
but the following summarizes important diff- 
erences: 

(1) Each node of the Hypercluster can 
consist of more than one scalar and/or vec- 
tor process0 r. 

2 



(2) Processors within a node communi- 
cate  through shared memory. 

(3) Independent processors (CPs) per- 
form the internode communication without 
interrupting the processors within a node 
that are performing the application computa- 
tions. These CPs are programmable, allow- 
ing investigation of various message-passing 
protocols. 

(4) There can be more than one commu- 
nication link between the FEP and the Hyper- 
cluster nodes. These links are intelligent, 
allowing experimentation with distributed 
opera ting-syst em concepts. 

(5) The processor technology within 
each node is not limited to one particular 
vendor. The use of a standard bus allows any 
processor board available for that bus to be 
incorporated. This feature also provides a 
rapid method for upgrading the system 
hardware. 

MPK DESIGN AND STRUCTURE 

The Hypercluster MPK is intended to 
provide basic operating and communication 
functions to the various processors. The 
communication services of the MPK can be 
accessed from a FORTRAN program through 
subroutine calls. This is done by providing a 
library of FORTRAN-callable routines which 
activate the MPK through a software inter- 
rupt. The kernel also allows the FEP to con- 
trol and communicate with the Hypercluster 
processors. A message-passing protocol 
defines the way in which all Hypercluster 
processors and the FEP communicate. Mes- 
sages can be categorized as follows: 

processors 
(1) Data to be transferred between 

(2) Control information from the FEP 
(3) Error or status information from 

(4) Data destined for the FEP for analy- 

The first category consists of messages 

the processors 

sis or storage 

to support the exchange of data between 
Hypercluster processors. This includes CPs, 
SPs, and the FEP. Messages in the second 
category are used mainly by HYCLOPS to 
control the operation of the Hypercluster. 
Messages to start ,  stop and resume execution 
are included here, as well as timer support. 
The third category encompasses messages 
from the Hypercluster regarding errors. 
These messages usually contain processor 
diagnostic and status information a t  the time 

of the error, and are sent to the FEP for 
processing by HYCLOPS. The last message 
category is used to support I/O for the 
Hypercluster processors. Currently, all I/O 
is provided through the resources of the 
FEP. Messages to store data on disk (from a 
FORTRAN WRITE statement, for example) 
or to display graphical information are sent 
to the FEP, which processes them. 

The MPK runs on each of the Hyper- 
cluster processors. A "layered" approach is 
used to define the various kernel elements as 
shown in Fig. 2. The hardware is initialized 
and tested by the INIT layer of the kernel, 
which resides in ROM. INIT tests the Hyper- 
cluster processors and communication links. 
It then loads the outer layers of the MPK, 
which are sent by HYCLOPS. HYCLOPS 
maintains a configuration file for the current 
Hypercluster hardware. The configuration 
file tells HYCLOPS how many nodes and pro- 
cessors to load, and what hardware specific 
information to initialize for the MPK. Load- 
ing the MPK, as opposed to having it ROM 
resident, aids in the development and debug- 
ging process, since changes can be made to 
the MPK and quickly tested. 

The INIT layer is followed by the Link 
Transfer Utility (LTU), which performs the 
most basic data transfer operation across a 
Hypercluster internode link. The LTU moves 
a message to/from a specified buffer in a 
Hypercluster node fromlto the dual-ported 
memory shared by the CPs. One CP in a link 
informs the other CP in the link of a mes- 
sage transfer either by a flag or an inter- 
rupt. The LTU in the receiving CP then sets 
up the information needed by the outer MPK 
layers to further process the message. 

One of the objectives of the MPK 
design is hardware retargettability, which is 
accommodated by the lowest two layers of 
the MPK. The INIT and LTU layers contain 
all the hardware dependent code associated 
with the processors and their communication 
links. These layers contain the only code 
that would have to be changed if different 
processor boards or communication links 
were used. The INIT and LTU are coded in 
assembly language for efficiency. The re- 
maining software layers are also coded in as- 
sembly language. This ties the upper layers 
of the MPK to one microprocessor family, 
but not to any particular board-level product 
based on that family. It was felt that this 
approach provided sufficient flexibility and 
speed for the initial version of the MPK and 

3 



the prototype Hypercluster hardware. The 

dependence across several microprocessor 
families, but a t  a performance cost. It will 
be investigated for coding future versions of 
the MPK. 

The remaining layers of the Hyperclus- 
ter kernel do not require specific informa- 
tion about the underlying hardware. The 
Network Communication Handler (NCH) is 
the next of these layers, and is responsible 
for the routing of messages within the Hyper- 
cluster. The NCH selects the appropiate link 
(and as a result, the CP) to send a message 
through based on the destination address. 
The destination address consists of a node 
and processor identification (ID). The NCH 
routes the message so as to minimize the 
total path length that it travels to reach its 
destination node. It then selects the appro- 
priate processor within that node to receive 
the message. 

layer takes action on a message that is re- 
ceived or is to be sent. When sending a mes- 
sage, this layer will acquire any necessary 
buffers, copy the message and set queue 
entries in the required processor as directed 
by the NCH. If a message is received, it is 
decoded and the appropriate handling routine 
is called. Some messages, destined for an SP 
in a node, are handled by the CPs without SP 
intervention. For example, a message to 
read the memory of an SP would be handled 
by one of the CPs in the node. The CP would 
read the requested data from the SP through 
its dual-port memory on the node bus. It 
would then form a response message with the 
data and send this message to the requester. 

The operating system and high-level 
language interface layers give HYCLOPS and 
the application program access to the ser- 
vices provided by the MPK. HYCLOPS runs 
on the FEP, which has a unique node and 
processor ID. This allows HYCLOPS to send 
and receive messages to/from any of the 
Hypercluster processors. The Hypercluster 
CPs on the FEP bus contain a special version 
of the MPK which implements a shared- 
memory interface through which messages 
are exchanged with the FEP. 110 and control 
functions are built into HYCLOPS and the 
M P K ' s  operating-system interface layer. 
This eliminates the need for a separate host 
program on the FEP to handle these func- 
tions. Another unique feature of this layer is 
the capability to read or write processor 

I use of the language C provides hardware in- 

The message transmission/reception 

I 

memory "on the fly". This means that 
HYCLOPS can read or change program varia- 
bles on the Hypercluster processors while the 
application program is running. 

The high-level Ianguage interface 
allows a user 's  application program to call 
various MPK services. This is accorr,plished 
through a software interrupt, or trap, which 
is issued from a FORTRAN subroutine. A 
pointer passed in an address register indi- 
cates where the message is that the MPK 
must service. A collection of subroutines 
called the parallel-processing support library 
issue various messages in this manner, giving 
the programmer high-level access to the 
MPK. Application programs can potentially 
issue messages from any of the categories 
described earlier, allowing control of data 
transfers or even system operation from any 
Hyper c lus t e r proc esso r . 

IMPLEMENTATION DETAIIS 

The basic unit of information which is 
transferred between Hypercluster processors 
and/or the FEP is a message. A message 
consists of a header and an optional. message 
text. The format of the message header is 
as follows: 

Offset Description 
(bytes) 

0 
2 Message type 
4 
6 
8 Destination address 

12 Message text pointer 

Number of bytes in message 

Source node and processor ID 
Destination node and proce:;sor ID 

The first field in the header (defines the 
number of bytes in the message, not includ- 
ing the header. The maximum message size 
is limited to  64KB since this field is 16 b 
wide. The message type field identifies what 
action is to be taken in response to this mes- 
sage. This is followed by 16-b codes for both 
the source and destination for this message. 
Each of these codes consists of an 8-b node 
and an 8-b processor ID. Every processor in 
a node, including the CPs, has a unique proc- 
essor ID. The processor ID represents an 
entry into a table containing the base 
addresses of every processor's dual-port 
memory on the node bus. This base address, 
combined with the destination address in the 

4 



. 

fifth field, yields a unique address within the 
shared-memory node environment. The final 
field in the header is a pointer to the option- 
al message text. This allows additional 
message data to be located anywhere in a 
Hypercluster node's memory. The total 
memory required for the header is 16 B. 

Message Queues 

Each processor in the Hypercluster 
maintains a message queue to receive all in- 
coming messages. A message queue consists 
of a number of 32-b slots, each of which is a 
pointer to a message header. After the 
initialization and self-test routines are per- 
formed, each processor goes into a polling 
mode, waiting for messages in i ts  queue. 
The presence of a message in the queue is 
indicated by a nonzero value a t  the current 
queue service pointer. The queue service 
pointer (QSP) is maintained by the processor 
to keep track of which message in the queue 
it is currently servicing. When a message is 
serviced, the value at  the QSP is zeroed out. 
This indicates that the slot is again available 
to hold message pointers. 

Queues are  serviced first-in-first-out 
(FIFO). A queue entry pointer (QEP) is main- 
tained to indicate the next f ree  queue slot. 
Any processor wanting to send a message to 
another processor must first access the QEP 
to see where in the receiving processor's 
queue it must place the message pointer. If 
the QEP is at  the last queue element, the 
new message pointer is entered at  this loca- 
tion, and the QEP is reset to the beginning of 
the queue. If this queue slot is not empty, a 
queue overflow message is issued to the user, 
and the Hypercluster is halted. 

The QSP is managed by the receiving 
processor only. The QEP is controlled by the 
sending processor (through dual-port mem- 
ory). Since the QEP can be changed by any 
of several processors, it  must be treated as a 
shared resource. Thus a multiprocessor prim- 
itive that assures mutual exclusion must be 
used to access the QEP. This can be done 
using a test-and-set (TAS) instruction. 

Message Size and Buffering 

The values in each slot of the message 
queue point to the header of the message. 
The header may contain enough information 
itself, or may also contain a pointer to a 

message text area, where further informa- 
tion is stored. When a processor in the 
Hypercluster wishes to send a message to an- 
other processor, it  must form the message (a 
header and, if necessary, a text area) some- 
where in memory. The message text can be 
buffered or unbuffered a t  the option of the 
programmer. An example of an unbuffered 
message would be one where the text pointer 
in the header is pointing directly to a FOR- 
TRAN array. With a buffered message, this 
array would be copied to a general buffer 
area. The unbuffered message eliminates 
the overhead of copying the message text to 
another buffer area, and is thus more effeci- 
ent. However, the unbuffered message re- 
quires that the memory space occupied by 
the message text not be altered until the 
message has been completely serviced by the 
MPK. 

Messages can be of any length, but the 
NCH breaks large messages into segments of 
a more managable size. The NCH will check 
the message header for the number of bytes 
in a message. If the size is larger than 
512 B, the message is split up and sent in 
51243 segments. A buffer area of l 2 8 K  is 
maintained in each processor for messages, 
and is treated as consisting of many fixed- 
size segments. Each segment is large enough 
to hold one 1643 header plus 512 B of data. 
This allows the buffer area to be treated as a 
ring buffer. The fixed-segment ring buffer 
approach, being simple to implement, is more 
time efficient than other approaches a t  the 
cost of memory efficiency. Since each 
Hypercluster processor has a large local 
memory, this tradeoff was felt to be 
reasonable. 

A message buffer pointer (MBP) is 
maintained to indicate to the sending proces- 
sor where in the 128K buffer the next mes- 
sage can be placed. The MBP is a shared 
resource (among processors in a node) and as 
such must be accessed through a TAS instruc- 
tion. Before writing into the buffer, a proc- 
essor must verify that the "message type" lo- 
cation in the header is zero. This indicates 
that this area of the buffer is free. If it  is 
not zero, a buffer overflow message is issued. 
Otherwise, the header and the message are 
written into the buffer, and the MBP is in- 
cremented by 528. If the new MBP value is 
beyond the buffer area, it is wrapped around 
to the beginning. 

5 



Message Broadcasting 

There are some instances where a 
processor or the FEP may want to send a 
message to all processors in the Hyperclus- 
ter. This is called broadcasting. A broad- 
cast message is indicated by using a unique 
destination processor ID. The destination 
node ID is not used. Messages can be broad- 
cast to CPs only, SPs only, or to all proces- 
sors. For example, one may want to issue 
control information to CPs only, and data to 
SPs only. When a CP receives a broadcast 
message, it keeps a copy of the message for 
itself, and sends the message on to another 
CP as determined by an embedded spanning 
tree architecture (Ref. 6). The CP then 
takes the appropriate action defined by the 
message type for each processor in i ts  node. 
For example, a data broadcast message to 
write information to all SPs would be inter- 
cepted by a CP in each node, which would 
write the data to each SP within i t ' s  node. 
Only data transfer and control messages sup- 
port broadcasting. 

Direct Data Transfer 

As  described earilier, the MPK sup- 
ports several categories of messages. The 
first category, data transfer, warrants fur- 
ther discussion here because of several 
unique characteristics. Data transfer mes- 
sages in the MPK can be direct and indirect, 
The indirect transfer is typical of the 
"SEND" message supported on many hyper- 
cube systems. The message buffer address 
and destination node are specified, but the 
address of the destination variable (in the ap- 
plication program) is not. This link is made 
through a "RECEIVE" call on the destination 
node, where the address of the receiving var- 
iable is specified as an argument. The 
"RECEIVE" message causes data to be trans- 
ferred from a general buffer area to a specif- 
ic variable area. The buffering overhead and 
the overhead associated with a "RECEIVE" 
call can be avoided through a direct form of 
data transfer message. Here, the address of 
the actual receiving variable is specified in 
the "SEND" message. Synchronization 
between the source and destination nodes 
can be accomplished through a flag variable 
included in the message, without the need 
for a "RECEIVE" call on the destination 
node. 

The direct data transfer message is 
more efficient than the indirect form, but 
puts the burden on the programmer of know- 
ing the physical address of the destmation 
variabie. This can be accomplished, for 
example, with FORTRAN common 'blocks if 
the compiler's common block allocation 
method is known and the common block ad- 
dresses are known or can be specified. Iden- 
tical common blocks are declared on the 
sending and receving processors, rem1 ting in 
identical addresses for variables within these 
common blocks. The names of variables 
within these common blocks can then be used 
for the destination variable argument in a 
dlrect data transfer message call. 

PERFORMANCE TESTS AND RISULTS 

Several communication perfoimance 
tests were run on the Hypercluster with ver- 
sion 1.0 of the MPK. The objectives of these 
tests were to verify that the MPK: (1) was 
functioning correctly and (2) provided realis- 
tic node to node communication perform- 
ance. Meeting these objectives ass'nes that 
results generated on the Hypercluster can be 
related to those generated on other hyper- 
cube systems, and that the architectural 
flexibility of the Hypercluster can lie effec- 
tively utilized. 

The first test was a node to node com- 
munication test. In this test, an SP in one 
node issues a message to transfer a specified 
number of bytes to an SP in the other node. 
This process is repeated in a loop for a speci- 
fied number of times. An average node to 
node communication rate as a function of 
the number of bytes transferred can be de- 
termined from this test. Figure 3 shows a 
plot of communication rate as a furition of 
the number of bytes transferred. The data 
for the Intel iPSC and the NCUBE systems 
were taken from (Ref. 7). For messages less 
that 512 B, the Hypercluster outperforms 
both commercial systems. Beyond !?I2 B, the 
Hypercluster link performance saturates at 
about 300 KB/sec. This is due to the packeti- 
zation of messages greater than 51;! B. The 
packet size can be varied, and this option 
will be studied in the future. 

It should be noted that this test was 
run SP to SP. This means that the CPs in the 
node had to transfer message infomation 
across the node bus, adding considerable 

6 



overhead. Although the CPs are not as com- 
putationally powerful as the SPs or VPs, 
there may be applications that can benefit 
from running on the CPs themselves. In this 
case, transfers between CP and SP would be 
unneccessary, and node to node communica- 
tion performance would be improved 
considerably. 

Another test which is commonly used 
to measure communication performance is 
the ring test, as described in (Ref. 8). In this 
case, the Hypercluster was mapped into a 4 
node ring. From this test, the performance 
parameter, tcomm, can be determined, where 
tcomm is defined as the transfer time in 
microseconds for a 32-b word. The results 
for this test are shown in Table 11, along with 
results from other hypercubes reported in 
(Refs. 8 and 9). As shown in Table 11, the 
MPK results compare favorably with the 
other systems, verifying that the Hyperclus- 
ter MPK provides realistic performance for 
message passing operations. Note that the 
NCUBE figures are given for 2 versions of 
their node operating system, standard and ex- 
tended VERTEX. The results shown previ- 
ously in Fig. 3, as taken from (Ref. 7), were 
probably for standard VERTEX, although this 
was not mentioned in (Ref. 7). The use of ex- 
tended VERTEX would probably result in bet- 
ter  performance for NCUBE (in Fig. 3) with 
smaller messages. 

All of the results shown were generated 
with version 1.0 of the MPK and prototype 
hardware. The message packet size used 
with version 1.0 is currently 512 B. This size 
can be changed, depending on the average 
message size required for a given applica- 
tion. A larger packet size will result in bet- 
ter performance for larger messages. Code 
optimization of the MPK will also improve 
performance. In addition, the CPs in the 
Hypercluster are 10 MHz processors with a 
16-b bus interface. Communication perform- 
ance could be further improved by using fast- 
er  processors with a 32-b bus interface. 
These options will be pursued for future ver- 
sions of the Hypercluster. 

CONCLUSIONS 

Future plans call for the investigation 
of several fluid-flow problems using the 
Hypercluster prototype and subsequent ver- 
sions of the Hypercluster. The results shown 
here demonstrate that the Hypercluster 
test-bed and the MPK provide an efficient 

CONCLUSIONS 

Future plans call for the investigation 
of several fluid-flow problems using the 
Hypercluster prototype and subsequent ver- 
sions of the Hypercluster. The results shown 
here demonstrate that the Hypercluster 
test-bed and the MPK provide an efficient 
distributed-memory communication mechan- 
ism that can be used in these investigations. 
In addition, the multiple-processor, shared- 
memory clusters a t  each node make the 
Hypercluster an attractive and powerful tool 
for investigating the relative merits of 
shared, distributed, or hybrid architectures 
for computational fluid and structural 
mechanics. 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7 

irocessor Super- 
ine ering 

Applications, Computer, 18[6] (1985) 
pp. 57-73. 

K. Hwang, Tutorial Supercomputers: 
Design and Applications, IEEE Com- 
puter Society Press, Los Angeles, 1984. 

P.B. Schneck, D. Austin, S.L. Squires, J .  
Lehmann, D. Mizell, and K.  Wallgren, 
Parallel Processor Programs in the 
Federal Government, Computer, 
Computer, 18[6] (1985) pp. 43-55. 

N. Mokhoff, Parallelism Breeds a New 
Class of Supercomputers, Computer 
Design, 26[6] (1987) pp. 53-60,62,64. 

G.L. Cole, R. Blech, and A. Quealy, 
Initial Operating Capability for the 
Hypercluster Parallel-Processing Test 
Bed, NASA TM-101953, 1989. (Pro- - 
ceedings of the Fourth Conference on 
Hypercube Concurrent Computers and 
Applications, Mar. 6-8, 1989, SIAM, 
Philadelphia, PA, to be published.) 

J.E. Brandenburg, and D.S. Scott, 
Embeddings of Communication Trees 
and Grids into Hypercubes, iPSC 
Technical Report No. 1, Intel Corp., 
Beaverton, OR, 1986. 



7. T.H. Dunigan, Hypercube Performance, 9. T.N. Mudge, G.D. Buzzard, and T.S. 
Abdelrahman, A High Performance 
Operating System for the NCUIE,  
Hypercube Multiprocessors 198'7, M.T. 
Heath. ed.. SIAM. PhiladelDhia, PA, 

Hypercube Multiprocessors 198 7, M. T. 
Heath, ed., SIAM, Philadelphia, PA, 
1987, pp. 178-192. 

A r c h i t e c t u r e  Number Media Software 
processors speed overhead 

Shared Few F a s t  Low 
D l s t r l b u t e d  Many Slow Hlgh 

8. A. Kolawa, and S.W. Otto, Perform- 

Progtam- 
ming 

Simple 
Complex 

1987, pp. 90-99. 

NCUBE NCUBE I P S C  
s tandard  e x t .  CrOS 
Ver tex  Ver tex  

ance of the Mark I1 and Intel 
Hypercubes, Hypercube Multiprocessors 
1986. M.T. Heath, ed., SIAM, 

I P S C  Mark I 1  
IHOS CrOS 

Philadelphia, PA, 1986, pp. 272-275. 

245.16 
41.79 
19.88 

46.76 160 5960 86.0 
10.37 80 777 45.5 
6.45 79 202 41.4 

TABLE 11. - VALUES OF TCOMM (psec) FOR THE HYPERCLUSTER AND OTHER 
HYPERCUBE SYSTEMS 

MPK V1.0 
bytes 

126.5 

256 14.6 

VP - VECTOR PROCESSOR 
CP - CONTROL PROCESSOR 
SP - SCALAR PROCESSOR 
CL - COMMUNICATION LINK 
M - SHARED MEMORY 

I 

I I 
I 
I 

FEP BUS 

Figure 1. - Hyperduster test bed architecture. 

Figure 2. - The hypercluster MPK. 

P 0 INTELiPSC 
0 NCUBE 

400 A HYPERCLUSTER 

300 
(I) 

i2 
200 

100 

t 
L - 

0 4 6 8 10 12 

Figure 3. - Hypercluster node to node performance. (Data 
from Dunigan, Hypercube muhiprocesson, 1987) 

log 2 BYTES 

8 



m Natlonal Aeronautics and Report Documentation Page 
Space Admimslration 

1. Report No. I 2. Government Accession No. I 3. Recipient's Catalog No. 

NASA TM-101952 

4. Title and Subtitle 5.  Report Date 

A Message Passing Kernel for the Hypercluster Parallel 
Processing Test Bed 

7. Author@) 

6. Performing Organization Code I------ 
8. Performing Organization Report No. 

9. Performing Organization Name and Address 

National Aeronautics and Space Administration 
Lewis Research Center 
Cleveland, Ohio 44135-3191 

12. Sponsoring Agency Name and Address 

Richard A. Blech, Angela Quealy, and Gary L. Cole 

11. Contract or Grant No. 

13. Type of Report and Period Covered 

Technical Memorandum 

I E4652 

17. Key Words (Suggested by Author(s)) 18. Distribution Statement 

Hypercube Unclassified -Unlimited 
Parallel processing Subject Category 62 
Software 
Fluid mechanics 

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price' 

Unclassified Unclassified 10 A02 

'For sale by the National Technical Information Service, Springfield, Virginia 22161 NASA FORM 1626 OCT 86 

10. Work Unit No. 

National Aeronautics and Space Administration 
Washington, D.C. 20546-0001 

14. Sponsoring Agency Code 

I 
15. Supplementary Notes 

Prepared for the Fourth Conference on Hypercubes, Concurrent Computers, and Applications, cosponsored by 
the U.S. Department of Energy (Applied Mathematical Sciences Program), Strategic Defense Initiative Organization 
(Office of Innovative Science and Technology), Joint Tactical Fusion Program Office, U.S. Air Force 
(Electronic Systems Division), Air Force Office of Scientific Research, and NASA Ames Research Center, 
Monterey, California, March 6-8, 1989. Richard A. Blech and Gary L. Cole, NASA Lewis Research Center; 
Angela Quealy, Sverdrup Technology, Inc., NASA Lewis Research Center Group, Cleveland, Ohio 44135. 

16. Abstract 

A Message-Passing Kernel (MPK) for the Hypercluster parallel-processing test bed is described. The Hypercluster 
is being developed at the NASA Lewis Research Center to support investigations of parallel algorithms and 
architectures for computational fluid and structural mechanics applications. The Hypercluster resembles the 
hypercube architecture except that each node consists of multiple processors communicating through shared 
memory. The MPK efficiently routes information through the Hypercluster, using a message-passing protocol 
when necessary and faster shared-memory communication whenever possible. The MPK also interfaces all of the 
processors with the Hypercluster operating system (HYCLOPS), which runs on a Front-End Processor (FEP). 
This approach distributes many of the I/O tasks to the Hypercluster processors and eliminates the need for a 
separate 110 support program on the FEP. 


